Quantum Dot Spontaneous Emission Lifetime Modification in Optical Microcavities using Oxide Apertured Micropillars

نویسنده

  • N. G. Stoltz
چکیده

An oxide aperture is used to confine optical modes in a micropillar structure. This method overcomes the limitations due to sidewall scattering loss typical in semiconductor etched micropillars. High cavity quality factors (Q) up to 48 000 are determined by external Fabry-Perot cavity scanning measurements, a significantly higher value than prior work in III-V etched micropillars. Measured Q values and estimated mode volumes correspond to a maximum Purcell factor figure of merit value of 72. A Purcell Factor of 2.5 is experimentally observed from a single quantum dot emitter coupled to a high Q cavity mode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cavity QED with quantum dots in semiconductor microcavities

Cavity quantum electrodynamic (QED) effects are studied in semiconductor microcavities embedded with InGaAs quantum dots. Evidence of weak coupling in the form of lifetime enhancement (the Purcell effect) and inhibition is found in both oxide-apertured micropillars and photonic crystals. In addition, high-efficiency, low-threshold lasing is observed in the photonic crystal cavities where only 2...

متن کامل

Modified spontaneous emission properties of CdS quantum dots embedded in novel three-dimensional microcavities

Modified spontaneous emission properties in the presence of confined photon modes inside the three-dimensional (3-D.) optical microcavities are demonstrated. Self-formed pyramidal-shaped semiconductor structures fabricated by selective-area growth technique are utilized as an optical microcavity in which discrete photon modes are generated. Noticeable modification of spontaneous emission from a...

متن کامل

Voltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy

The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...

متن کامل

Quantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure

In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...

متن کامل

Gain optimization of the optical waveguide based on the quantum box core/shell structure

In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006